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Multi‑site benchmark classification 
of major depressive disorder 
using machine learning on cortical 
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Machine learning (ML) techniques have gained popularity in the neuroimaging field due to their 
potential for classifying neuropsychiatric disorders. However, the diagnostic predictive power of the 
existing algorithms has been limited by small sample sizes, lack of representativeness, data leakage, 
and/or overfitting. Here, we overcome these limitations with the largest multi‑site sample size to 
date (N = 5365) to provide a generalizable ML classification benchmark of major depressive disorder 
(MDD) using shallow linear and non‑linear models. Leveraging brain measures from standardized 
ENIGMA analysis pipelines in FreeSurfer, we were able to classify MDD versus healthy controls (HC) with 
a balanced accuracy of around 62%. But after harmonizing the data, e.g., using ComBat, the balanced 
accuracy dropped to approximately 52%. Accuracy results close to random chance levels were 
also observed in stratified groups according to age of onset, antidepressant use, number of episodes and 
sex. Future studies incorporating higher dimensional brain imaging/phenotype features, and/or using 
more advanced machine and deep learning methods may yield more encouraging prospects.
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Major depressive disorder (MDD) is a psychiatric disorder with great impact on society, with a lifetime prevalence 
of 14%1, often resulting in reduced quality of  life2 and increased risk of suicide for those  affected3. Considering 
the possibility of treatment  resistance4 and accelerated brain  aging5, early recognition and implementation of 
effective treatments are critical. Unfortunately, there are no reliable biomarkers to date to diagnose MDD, to 
predict its highly variable natural progression or response to  treatment6. Until now, the diagnosis of MDD relies 
exclusively on self-reported symptoms in clinical interviews, which—despite great efforts—present risk of mis-
diagnosis due to subjectivity and limited specificity of some symptoms, especially in the early stage of mental 
disorders. Furthermore, comorbid conditions such as substance use disorders, anxiety spectrum  disorders7, and 
other mental and somatic  diseases8 may contribute to the difficulty of correctly diagnosing and treating MDD.

With modern neuroimaging techniques such as magnetic resonance imaging (MRI), it has become possible to 
investigate cortical and subcortical brain alterations associated with MDD with high spatial resolution. Numerous 
studies reveal structural brain differences in MDD compared to healthy controls (HC)9–13, with patients present-
ing, on average, smaller hippocampal volumes as well as lower cortical thickness in the insula, temporal lobes, 
and orbitofrontal areas. However, inference at the group level and small effect sizes preclude clinical application. 
Analytic tools such as machine learning (ML) that allow multivariate combinations of brain features and enable 
inference at the individual level may result in better discrimination between MDD patients and HC, thereby 
potentially providing clinically relevant biomarkers for MDD.

Current literature shows MRI-based MDD classification accuracies ranging from 53 to 91%14,15 with 
 inconsistencies regarding which brain regions are the most informative for the classification. This lack of 
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consensus in the literature raises concerns regarding the generalizability of the classification methods and 
their related findings. A major contributor to high variability in classification performances is sample  size16,17. 
Specifically smaller samples of the test data set tend to show more extreme classification accuracies in both 
directions from chance  level16, whereas studies with larger sample sizes in the test set tend to converge to an 
accuracy of around 60%17. In the presence of publication bias, which favors the reporting of overestimations, 
published literature can quickly accumulate inflated  results18. Further, overestimations in the neuroimaging 
field may also be driven by data leakage, which refers to the use of any information from the test set in any part 
of the training  process19,20.

Another factor contributing to inconsistencies in results is the heterogeneity of samples in relation 
to demographic and clinical characteristics, which plays a significant role both in MDD and in the general 
 population5,21,22. As large representative samples within a single cohort is difficult (e.g., due to financial cost, 
access to patient population, etc.), there is a growing interest in performing multi-site mega-analyses to address 
these issues.

ENIGMA MDD is a large-scale worldwide consortium, which curates and applies standardized analysis 
protocols to MRI and clinical/demographic data of MDD patients and HC from 52 independent sites from 17 
countries across 6 continents (for  review23,). Such large-scale approaches with global representation are necessary 
for identifying brain alterations associated with MDD that are realistic, reliable, and  generalizable24. Therefore, 
we consider data from different international cohorts included in ENIGMA MDD a powerful and efficient 
resource to benchmark the robustness of representative examples of shallow linear and non-linear ML algorithms. 
Such algorithms include support vector machines (SVM), logistic regression with least absolute shrinkage and 
selection operator (LASSO) and ridge regularization, elastic net, and random forests. An additional advantage 
of ENIGMA MDD is that the inclusion of thousands of participants allows the stratification of several important 
factors related to cortical and subcortical brain alterations in MDD such as sex, age of MDD onset, number of 
depressive episodes, and antidepressant use. However, unifying multi-site data presents challenges. The global 
group differences between cohorts—referred to here as a site effect—may arise from different MR acquisition 
equipment and acquisition  protocols25, and/or demographic and clinical  factors26,27. Ignoring the site effect 
may lead to construction of suboptimal less-generalizable classification  models28, hindering the generalizability 
of the results. Along these lines, a commonly used strategy to mitigate site effect is to apply a harmonization 
technique such as  ComBat29. Adopted from genomic studies, NeuroComBat estimates and statistically corrects 
for (harmonizes) differences in location (mean) and scale (variance) across different cohorts, while preserving 
or perhaps even enhancing the effect size of the variables of  interest30–32. There are only a few studies attempting 
large sample multi-site MDD classification using structural brain  metrics16,17; however, site effects were not 
addressed in their analyses.

The main goal of this study was to establish a benchmark for classification of MDD versus HC based on 
structural cortical and subcortical brain measures in the largest sample to date. We profiled the classification 
performance of representative examples of linear and shallow non-linear models, including SVM with linear and 
rbf kernels with and without feature selection (PCA, t-test), logistic regression with LASSO/ridge regularization, 
elastic net and random forest. The model’s performance is estimated via balanced accuracy, area under the 
receiver operating characteristic (AUC), sensitivity and specificity. We hypothesized that all models would be 
able to classify MDD versus HC with balanced accuracy higher than random chance, based on provided brain 
measures. We pooled preprocessed structural data from ENIGMA MDD participants, including 5365 subjects 
(2288 MDD and 3077 HC) from 30 cohorts worldwide. As we were equally interested in general structural brain 
alterations in MDD as well as the generalizability of classification performance in sites unseen in the training 
phase, the data were split according to two strategies. First, age and sex (Splitting by Age/Sex) were evenly 
distributed across all cross-validation (CV) folds, where each fold is used as a test set once and the rest of folds 
is used as a training set iteratively. Second, the sites (Splitting by Site) were kept whole across CV folds, so the 
algorithms were trained and tested on different sets of cohorts, resulting in large between-sample heterogeneity 
of training and test sets, potentially resulting in lower classification  performance33, especially if large site effects 
are present. Because MDD is a highly heterogeneous diagnosis—and previous work from ENIGMA  MDD10,11 
has identified distinct alterations in different clinical subgroups—we also stratified MDD based on sex, age of 
onset, antidepressant use, and number of depressive episodes to investigate whether classification accuracy could 
be improved when considering more homogenous subgroups. Additionally, we investigated which brain areas 
were most relevant to classification performance.

In summary, we expected that (1) All models would correctly classify MDD above chance level, (2) Splitting 
by Site would yield lower performance versus Splitting by Age/Sex, (3) Application of ComBat would improve 
classification performance for all models, and (4) Stratified analyses according to demographic and clinical 
characteristics would yield higher classification performance. We also explored the impact of other approaches 
to remove site effects (ComBat-GAM34 and  CovBat35) from structural brain measures prior to feeding these 
measures into the classification models.

Results
Participants and data splitting
From 5572 participants, 207 were excluded due to less than 75% of combined cortical and subcortical features 
being provided, resulting in 5365 subjects (2288 MDD and 3077 HC) used in the analysis.

Substantial differences in age (87% of pairwise comparisons between cohorts were significant, t-test, p < 0.05) 
and sex (54%, t-test, p < 0.05) distribution exist in the investigated cohorts (Table 1, Supplementary Table 4). 
In the Splitting by Age/Sex strategy, all cohorts were evenly distributed across the folds, resulting in a similar 
number of subjects in each of fold (Table 2 left). In the Splitting by Site strategy, entire cohorts were kept into 
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Cohort Number of subjects Age mean (SD) Number of females (%)

AFFDIS

 Total 79 39.75 (14.67) 36 (46)

 HC 46 39.87 (14.29) 22 (48)

 MDD 33 39.58 (15.18) 14 (42)

Pharmo (AMC)

 Total 51 29.37 (4.64) 51 (100)

 HC 0 N/A N/A

 MDD 51 29.37 (4.64) 51 (100)

Barcelona-StPau

 Total 94 46.66 (7.81) 72 (77)

 HC 32 46.03 (8.00) 23 (72)

 MDD 62 46.98 (7.68) 49 (79)

CARDIFF

 Total 40 46.55 (11.74) 27 (68)

 HC 0 N/A N/A

 MDD 40 46.55 (11.74) 27 (68)

CSAN

 Total 109 34.70 (12.88) 74 (68)

 HC 49 33.20 (12.07) 34 (69)

 MDD 60 35.92 (13.38) 40 (67)

Calgary

 Total 107 17.03 (4.12) 60 (56)

 HC 52 15.81 (5.03) 29 (56)

 MDD 55 18.19 (2.51) 31 (56)

DCHS

 Total 79 30.91 (6.71) 79 (100)

 HC 61 31.49 (6.82) 61 (100)

 MDD 18 28.94 (5.89) 18 (100)

ETPB

 Total 60 35.03 (9.86) 36 (60)

 HC 26 33.88 (10.22) 16 (62)

 MDD 34 35.91 (9.48) 20 (59)

Episca (Leiden)

 Total 49 15.00 (1.54) 42 (86)

 HC 30 14.73 (1.53) 26 (87)

 MDD 19 15.42(1.46) 16 (84)

FIDMAG

 Total 69 47.22 (12.29) 44 (64)

 HC 34 45.94 (11.49) 22 (65)

 MDD 35 48.46 (12.90) 22 (63)

Groningen

 Total 41 44.27 (13.67) 30 (73)

 HC 21 44.05 (13.96) 16 (76)

 MDD 20 44.50 (13.34) 14 (70)

Houston

 Total 290 28.72 (16.30) 169 (58)

 HC 186 26.76 (15.91) 105 (56)

 MDD 104 32.23 (16.39) 64 (62)

Jena

 Total 107 46.76 (15.00) 52 (49)

 HC 77 47.75 (15.93) 36 (47)

 MDD 30 44.20 (11.92) 16 (53)

LOND

 Total 130 49.67 (8.62) 79 (61)

 HC 61 51.72(7.87) 32 (53)

 MDD 69 47.86(8.85) 47 (68)

Continued
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Cohort Number of subjects Age mean (SD) Number of females (%)

MODECT

 Total 42 72.71 (9.25) 28 (67)

 HC 0 N/A N/A

 MDD 42 72.71 (9.25) 28 (67)

MPIP

 Total 548 48.66 (13.59) 315 (57)

 HC 211 49.53 (13.02) 124 (59)

 MDD 337 48.12 (13.90) 191 (57)

Melbourne

 Total 245 19.42 (2.88) 130 (53)

 HC 102 19.58 (2.97) 54 (53)

 MDD 143 13.31 (2.80) 76 (53)

Minnesota

 Total 110 15.47 (1.89) 79 (72)

 HC 40 15.68 (1.98) 26 (65)

 MDD 70 15.36 (1.83) 53 (76)

Moraldilemma

 Total 70 18.81 (1.94) 70 (100)

 HC 46 18.50 (1.75) 46 (100)

 MDD 24 19.42 (2.14) 24 (100)

NESDA

 Total 219 38.11 (10.32) 145 (66)

 HC 65 40.29 (9.67) 42 (65)

 MDD 154 37.19 (10.45) 103 (67)

QTIM

 Total 386 22.08 (3.25) 267 (69)

 HC 284 22.11 (3.30) 190 (67)

 MDD 102 22.01 (3.11) 77 (75)

UCSF

 Total 163 15.46 (1.31) 91 (56)

 HC 88 15.32 (1.28) 42 (48)

 MDD 75 15.63 (1.33) 49 (65)

SHIP_S2

 Total 579 55.01 (12.57) 294 (51)

 HC 443 55.44 (12.80) 198 (45)

 MDD 136 53.59 (11.68) 96 (71)

SHIP_T0

 Total 1229 50.15 (13.69) 607 (49)

 HC 919 50.50 (14.18) 405 (44)

 MDD 310 49.12 (12.04) 202 (65)

SanRaffaele

 Total 45 49.07 (13.51) 32 (71)

 HC 0 N/A N/A

 MDD 45 49.07 (13.51) 32 (71)

Singapore

 Total 38 39.50 (6.43) 18 (47)

 HC 16 38.69 (4.59) 8(50)

 MDD 22 40.09 (7.43) 10 (45)

Socat_dep

 Total 179 37.85 (13.34) 161 (90)

 HC 100 36.42 (13.57) 90 (90)

 MDD 79 39.66 (12.81) 71 (90)

StanfFAA

 Total 32 32.71 (9.56) 32 (100)

 HC 18 30.44 (9.96) 18 (100)

 MDD 14 35.63 (8.14) 14 (100)

Continued
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single folds, this time balancing the total number of subjects in each fold as close as possible (Table 2 right). This 
resulted in an irregular number of participants in each fold, with some folds containing only one of the larger 
cohorts (e.g., SHIP-T0, SHIP-S2, MPIP) and others containing multiple smaller cohorts.

Full data set analysis
The classification performance of all models was similar and is presented in Table 3. When sites were evenly 
distributed across all CV folds (Splitting by Age/Sex), the highest balanced accuracy of 0.639 was achieved 
by SVM with rbf kernel, when trained using all cortical and subcortical features. The application of ComBat 
harmonization resulted in a performance drop of all models close to chance level. This pattern of lower 
classification performance, when ComBat was applied, was also observed across other classification metrics 
(see Supplementary Tables 5, 6, 7). Yet specificity was found to be up to 10% higher than sensitivity, possibly 
related to potential imbalances in ratio MDD to HC and its effect on the classification. For the Splitting by Site 
strategy, classification performances did not change significantly based on whether the ComBat harmonization 
was performed or not. Balanced accuracy was close to random chance, indicating that the models were not 
able to differentiate MDD subjects from HC. The application of ComBat did not result in higher classification 
accuracies (Table 3). By exploring the classification performances measured on only a subset of cortical and 
subcortical features, we observed very similar results with classification around chance level. Similarly, there 
was no improvement when more sophisticated harmonization algorithms such as ComBat-GAM and CovBat 
were applied (see Supplementary Table 8).

When no harmonization step was applied, the choice of CV splitting strategy affected all measures of 
classification performance. Splitting by Age/Sex strategy yielded a balanced accuracy above 0.60 compared to 
roughly 0.51 accuracy for the Splitting by Site strategy. The ComBat harmonization step evened the classification 
performance of algorithms for the different splitting strategies, both being close to random chance. Information 
on the balanced accuracy changes via ComBat performing leave-one-site-out CV, can be found in Supplementary 
Table 9.

Cohort Number of subjects Age mean (SD) Number of females (%)

StanfT1wAggr

 Total 115 37.18 (10.27) 69 (60)

 HC 59 37.24 (10.43) 36 (61)

 MDD 56 37.11 (10.09) 33 (59)

TIGER

 Total 60 15.63 (1.34) 38 (63)

 HC 11 15.18 (1.03) 5 (45)

 MDD 49 15.73 (1.38) 33 (67)

All sites

 Total 5365 39.84 (17.69) 3227 (60)

 HC 3077 40.82(18.09) 1706 (55)

 MDD 2288 38.52 (17.05) 1521 (66)

Table 1.  ENIGMA MDD participating cohorts in the study. Each cohort is presented with number of total 
subjects, number of patients with major depressive disorder (MDD) and healthy controls (HC), as well as their 
mean age (in years) and sex (number and % of females).

Table 2.  Data splitting strategies. The differences in strategies are manifested in the distribution of age, sex, 
and diagnosis between cross-validation folds.

Splitting by Age/Sex Splitting by Site

Fold Age mean (SD)
Number of females 
(%)

Number of 
subjects (%MDD) Fold Age mean (SD)

Number of 
females (%)

Number of 
subjects (%MDD)

1 39.98 (17.40) 322 (60) 536 (42) 1 50.15 (13.69) 607 (49) 1229 (25)

2 39.63 (17.81) 324 (60) 538 (42) 2 55.01 (12.57) 294 (51) 579 (23)

3 39.85 (17.57) 325 (60) 538 (43) 3 48.66 (13.59) 315 (57) 548 (61)

4 39.66 (17.94) 322 (60) 535 (39) 4 22.90 (4.97) 299 (72) 418 (28)

5 39.99 (17.56) 323 (60) 538 (44) 5 36.72 (19.69) 272 (60) 451 (51)

6 39.75 (17.25) 317 (60) 531 (43) 6 22.53 (10.92) 293 (65) 450 (68)

7 40.15 (17.89) 327 (60) 541 (42) 7 35.94 (12.96) 295 (71) 418 (59)

8 39.81 (17.93) 322 (60) 535 (44) 8 38.85 (12.66) 348 (81) 431 (45)

9 39.86 (17.73) 320 (60) 535 (44) 9 24.79 (16.16) 203 (54) 377 (42)

10 39.74 (17.80) 325 (60) 538 (43) 10 34.95 (15.45) 301 (65) 464 (55)
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As the performance of the models were similar across all conditions, we assessed the weights of SVM with 
linear kernel to investigate, which regions contributed the most to the classification. The performance of SVM 
with and without application of ComBat was primarily driven by roughly the same set of cortical features, 
which could be observed by examining the feature weights. Feature weights of the SVM with linear kernel are 
presented in Figs. 1 and 2. Even though the harmonization step affected the weights of the features, most of the 
informative features (with absolute weight > 0.1) remained present. Cortical thickness features had greater weights 
compared to cortical surface areas, among which the left caudal middle frontal, left inferior parietal, left and right 
inferior temporal, left medial orbitofrontal, left postcentral, left precuneus, left superior frontal, right lingual, right 
paracentral, and right superior temporal regions were informative with and without the harmonization step. In 
the case of the regional surface areas, left and right cuneus, left inferior temporal, left medial orbitofrontal, left 
postcentral, and right precentral regions were found to be most informative for classification. Among subcortical 
volumes, no features remained informative after removing site effect via ComBat.

Data stratification
Next, we investigated the classification performance of models trained and tested on stratified data by demo-
graphic and clinical characteristics. The general pattern of the highest accuracy achieved by Splitting by Age/
Sex strategy without ComBat and the significant drop in the accuracy when ComBat is applied was observed 
in all stratified analyses (below). In the Splitting by Site strategy, the classification performance did not change 
significantly when ComBat was applied. Information on the feature weights may be found in Supplementary 
Figs. 1, 2, 3, 4.

Males versus females
The number of male subjects is 2131 and female subjects is 3227 (7 male participants from the Episca cohort 
were not considered as we could not split them into 10 CV folds). In the Splitting by Age/Sex strategy without 
the harmonization step, the highest balanced accuracy of 0.632 was achieved when trained and tested on males—
compared to maximum of 0.585 for females. When ComBat was applied, the accuracy dropped to 0.530 for 
males and to 0.529 for females, showing that there were minimal differences in classification results for males 
and females. For Splitting by Site, the accuracy did not change depending on the use of ComBat for both 
males (0.513–0.506) and females (0.519–0.517). Nevertheless, different brain regions were found important for 
classification in subgroups. In general, more features were found to be important for classification for males 
compared to females; this is especially noticeable for the regional surface areas (Supplementary Fig. 1).

Age of onset
For Splitting by Age/Sex, when only patients first diagnosed in adolescence were included in the analysis, yielding 
3,794 subjects in total, an accuracy of 0.626 was achieved, compared to 0.623 when patients who were first 
diagnosed in adulthood were analyzed. These accuracies dropped to 0.548 and 0.521 respectively, when ComBat 

Table 3.  Balanced accuracy measured on the entire data set, after being divided into cross-validation folds 
using the Splitting by Age/Sex and Splitting by Site strategies. We evaluated classification performances when 
models are trained on combined cortical and subcortical features, cortical thickness, cortical surface area, and 
subcortical volume. Furthermore, all models were trained/tested without and with ComBat harmonization.

Cortical + subcortical Cortical thickness Cortical surface area Subcortical volume

No ComBat With ComBat No ComBat With ComBat No ComBat With ComBat No ComBat With ComBat

Splitting by Age/Sex

 SVM linear 0.616 0.524 0.577 0.504 0.572 0.518 0.602 0.524

 SVM rbf 0.639 0.525 0.600 0.515 0.578 0.510 0.619 0.513

 SVM + PCA 0.638 0.529 0.601 0.513 0.575 0.518 0.622 0.513

 SVM + ttest 0.627 0.515 0.581 0.515 0.567 0.526 0.619 0.521

 LASSO 0.612 0.524 0.583 0.499 0.578 0.516 0.596 0.518

 Ridge 0.610 0.523 0.585 0.498 0.573 0.515 0.594 0.520

 Elastic Net 0.609 0.523 0.584 0.500 0.569 0.517 0.593 0.520

 Random Forest 0.613 0.507 0.593 0.514 0.574 0.509 0.611 0.511

Splitting by site

 SVM linear 0.512 0.519 0.498 0.495 0.499 0.506 0.506 0.521

 SVM rbf 0.513 0.515 0.493 0.499 0.493 0.513 0.503 0.519

 SVM + PCA 0.527 0.520 0.502 0.512 0.504 0.524 0.520 0.520

 SVM + ttest 0.502 0.512 0.487 0.499 0.507 0.508 0.510 0.527

 LASSO 0.513 0.517 0.491 0.489 0.508 0.513 0.507 0.512

 Ridge 0.514 0.514 0.497 0.490 0.505 0.509 0.507 0.514

 Elastic Net 0.513 0.514 0.498 0.489 0.503 0.514 0.507 0.514

 Random Forest 0.518 0.506 0.495 0.501 0.491 0.503 0.519 0.501
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was applied. In the Splitting by Site strategy, the balanced accuracy metrics did not change substantially for both 
subgroups: 0.541 to 0.544 for the adolescent-onset group and 0.546–0.518 for the adult-onset group, highlighting 
the absence of significant differences between these groups (Supplementary Fig. 2).

Figure 1.  Feature weights of support vector machines (SVM) with the linear kernel. To assess the decision-
making of SVM to differentiate subjects with major depressive disorder (MDD) from healthy controls (HC), we 
investigate the importance of the structural brain features by looking at the corresponding feature weights for 
the regional cortical surface areas, cortical thicknesses and subcortical volumes. The horizontal bars indicate the 
95% confidence interval calculated using percentile method via bootstrapping.
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Antidepressant use versus antidepressant free (at the time of MR scan)
Both subgroups showed a drop in balanced accuracy when ComBat was applied. In case of Splitting by Age/Sex, it 
reduced from 0.564 to 0.529 for the antidepressant-free subgroup (4408 subjects) and from 0.716 to 0.534 for the 
antidepressant subgroup (3988 subjects). When Splitting by Site, the balanced accuracy metrics did not change 
significantly for any of the subgroups when ComBat was used. For the antidepressant-free subgroup, it decreased 
from 0.564 to 0.528, while for the antidepressant group, it dropped from 0.560 to 0.483 (Supplementary Fig. 3).

First episode versus recurrent episodes
Similarly, a drop in accuracy was observed when the data set was stratified based on the number of depressive 
episodes with versus without ComBat. In Splitting by Age/Sex, the balanced accuracy for the first episode 
subgroup dropped from 0.559 to 0.518 when ComBat was applied. For individuals with more than one episode, 
the balanced accuracy decreased from 0.644 to 0.520 with ComBat. In the Splitting by Site strategy, the 
algorithm’s performance was not majorly affected by ComBat in the single episode subgroup, yielding 0.482 to 
0.512 in balanced accuracy and an insignificant drop from 0.521 to 0.505 for the recurrent episodes subgroup 
(Supplementary Fig. 4).

Discussion
In this work, we benchmarked ML performance on the largest multi-site data set to date, using regional cortical 
and subcortical structural information for the task of discriminating patients with MDD versus HC. We applied 
shallow linear and non-linear models to 152 atlas-based features of 5365 subjects from the ENIGMA MDD 
working group. To investigate brain characteristics common to MDD, as well as realistic classification metrics 
for unseen sites, we used two different data splitting approaches. Balanced accuracy was up to 63%, when data 
was split into folds according to Splitting by Age/Sex, and up to 51%, when data was split into folds according to 
Splitting by Site strategy. The harmonization of the data via ComBat evened the classification performance for 
both data splitting strategies, yielding up to 52% of balanced accuracy. This classification level implies that initial 
differences in performances were due to the site effects, most likely stemming from differences in MRI acquisition 
protocols across sites. Lastly, the data set was stratified based on demographic and clinical factors, but we found 
only minor differences in terms of classification performances between subgroups.

Figure 2.  The most informative features for classification including regional cortical surface areas, thicknesses 
and subcortical volumes, trained on the whole data set without and with ComBat harmonization. Increased and 
decreased feature weight values in the major depressive disorder (MDD) group are represented by red and blue 
colormap, respectively.
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Data splitting and site effect
Splitting of the data plays an important role in formulating and testing the hypotheses as well as validating them. 
As shown  in36, different data splitting techniques in combination with machine and deep learning algorithms 
in medical mega-analytical studies may introduce unwanted biases influencing classification or regression 
performances. Here we aimed to consider two data splitting paradigms: Splitting by Age/Sex and Splitting by 
Site. With Splitting by Age/Sex, we investigated general MDD alterations in contrast to HC using ML methods 
to obtain unbiased results regarding these important demographic factors. When we look at the weights of the 
SVM with linear kernel estimated on the entire data set, they correspond to the performance from Splitting by 
Age/Sex, as every CV fold contains all sites and demographically corresponds closely to the whole data set. With 
Splitting by Site, we wanted to see if the knowledge learned in one subset of cohorts could be translated to unseen 
cohorts—this can only be realistically measured when data is split according to the site it belongs to. To the best 
of our knowledge, this is the first study to systematically emphasize differences in MDD versus HC classification 
performance in the context of data splitting strategies and the impact of ComBat in these strategies. The balanced 
accuracy of algorithms trained on data from Splitting by Age/Sex was up to 10% higher compared to Splitting by 
Site, confirming our expectations. This is a common trend in multi-site neuroimaging  analyses37, which indicates 
site effect and emphasizes how the nuances in data splitting strategies can strongly influence the classification 
performance. The presence of the site effect was additionally confirmed by training the SVM model to classify 
subjects according to their respective site, yielding substantially higher balanced accuracy compared to the main 
task of MDD versus HC classification (see Supplementary section “Harmonization methods”). The possibility 
that the site effect still reflected the demographic differences across cohorts, as cortical and subcortical features 
undergo substantial changes throughout  lifespan34 and differ between males and  females21,22, was not supported. 
Regressing out these sources of demographic information did not significantly change the level of classification 
when predicting site belonging. According to our results, a major source of the site effect comes from the different 
scanner models and acquisition protocols, since we achieved the highest accuracy when attempting to classify 
scanner type (see Suppl. “Harmonization methods”).

In addition to scanning differences, demographic and diagnostic characteristics distributions were different 
across the sites. Therefore, we explored if balancing the sample in terms of age and sex distributions would lead 
to higher classification performance. However, balancing of age/sex distributions across sites did not improve 
classification performance in Splitting by Site (balanced accuracy 52.6%/50.7% without/with ComBat). Thus, 
balancing age and sex did not contributed to better performance. As the MDD/HC ratio also varied across sites, 
an influence of site affiliation to the main MDD versus HC task could exist. Therefore, we additionally explored if 
the classification performance would drop to random level by equalizing the MDD/HC ratio in every site before 
splitting the data according to Splitting by Age/Sex. Sites without HC were discarded from this analysis. Indeed, 
we observed a substantial drop of the balanced accuracy from 61 to 53% with 1:1 MDD to HC ratio, confirming 
our assumption of likely incorporation of the site affiliation in the diagnosis classification.

Building on this, ComBat was able to remove the site effect, as all classification models could not differentiate 
between sites after its application. Subsequently, there were no differences between classification results across 
splitting approaches, with around 0.52 in balanced accuracy. Such a low accuracy—close to random chance—
is consistent with another large sample study based on two  cohorts17. In their study, self-reported current 
depression was speculated as a reason for low accuracy, but this possibility is unlikely explaining our classification 
results. Moreover, similar classification levels in our and their study support the notion that a more balanced 
ratio between classes is not the main aspect behind the low power of discrimination. Furthermore, single site 
classification analysis revealed 0.50 to 0.55 accuracy range for bigger cohorts, while smaller cohorts yielded wider 
range of classification results (Supplementary Table 10), in line with previous large sample  study16.

Similar to ComBat, other more sophisticated harmonization methods such as ComBat-GAM and CovBat 
were able to remove site effect, but did not improve the balanced accuracy in Splitting by Site strategy. We cannot 
exclude the possibility that ComBat-like harmonization tools may overcorrect the data and remove weaker 
group differences of  interest38. Hence, encouraging such evaluations in large data sets as well as implementing 
new methods to be  tested39,40 on both the group and the single subject prediction level could be of great benefit 
for the imaging community.

Machine learning performance
In our study, the selection of shallow linear and non-linear classification algorithms was guided its low 
computational complexity and robustness. According to previous  studies14,17, SVM is the most commonly and 
successfully used algorithm in previous analyses. We have tested other commonly used linear ML algorithms, 
such as logistic regression with LASSO, logistic ridge regression and elastic net  logistic14,41,42. Given that logistic 
regression models already have an in-built feature selection procedure, we also included feature selection 
algorithms such as the two-sample t-test and  PCA43–45, for a fair comparison with SVM. Lastly, we included 
kernel SVM and random forest as representative shallow non-linear models. There was no single winner with 
a significantly higher classification performance across all algorithms, with a balanced accuracy up to 64%, 
when applied in data split by age/sex, and up to 53%, when split according to subsets of site. A similar trend 
was observed with AUC. In general, specificity was up to 5% higher than sensitivity, possibly because of the 
imbalanced MDD/HC data sets, even when the impact of both classes was weighted by its ratio during the 
training.

Considering such a low balanced accuracy, future studies could apply more sophisticated classification 
methods such as Convolutional Neural  Networks46, which are able to detect nonlinear interactions between all 
the features as well as to consider spatial information of the given features. As it was demonstrated previously on 
both real and simulated  data47, regressing out covariates can lead to lower classification performance, therefore 



11

Vol.:(0123456789)

Scientific Reports |         (2024) 14:1084  | https://doi.org/10.1038/s41598-023-47934-8

www.nature.com/scientificreports/

one could use an importance weighting instead. Another option would be to include other data modalities such 
as vertex-wise cortical and subcortical  maps48,49 or even voxel-wise T1 images to capture even more fine-grained 
 changes50, which are also present in shapes of subcortical  structures51 or diffusion  MRI52. A recent resting-state 
fMRI multi-site study by  Qin53 reported an accuracy of 81.5%. Thus, integration of structural and functional 
data modalities may result in even higher classification performances.

Predictive brain regions
Our results do not support the hypothesis that MDD can be discriminated from HC by regional structural 
features; classification performance, when site effects were removed, was close to chance level. Nevertheless, 
during investigation of the most discriminative regions, even after ComBat, we found an overlap with previously 
reported MDD-related regions. Multiple cortical and subcortical regions were found as the most discriminative 
between MDD and HC. Most of the cortical regions were identified in previous ENIGMA MDD  work10, which 
overlaps with our study set of cohorts. Shape differences in left temporal gyrus were reported previously in a 
younger population with  MDD54. Left postcentral gyrus and right cuneus surface area were associated with 
severity of depressive symptoms, while left superior frontal gyrus, bilateral lingual gyrus and left entorhinal 
cortical thickness were decreased in MDD  group10,55. In a previous study, MDD subjects exhibited reduced 
cortical volume compared to  HC56. Differences in orbitofrontal cortex between MDD and HC were also 
previously  identified10. Overall, the effect sizes for case–control differences in these studies were small, which 
is in line with our current results showing low classification accuracies of these structural brain measures. 
Additionally, we also found increased thickness of left caudal middle frontal gyrus, right pars triangularis, right 
superior parietal and right temporal pole in MDD group, which was not previously reported. All subcortical 
volumes identified as informative for classification became uninformative after ComBat was applied, suggesting 
that either previously identified alterations in subcortical  regions11 cannot be directly used as MDD predictors 
at an individual level or ComBat removed differences significant for classification. One possible reason is that 
subcortical volumes tend to exhibit complex association with the age. Therefore, linear age regression might be 
an overly simplistic representation of aging trajectories both in ComBat and residualization step. While some of 
the regions were found also to be predictive in the previous large sample MDD versus HC study from Stolicyn 
and  colleagues17, it is dificult to draw a consistent conclusion as they highlight the regions based on the selection 
frequency by the decision tree model, without reporting the direction of the modulation.

When models were trained and tested only on the subset of features in Splitting by Age/Sex, cortical 
thicknesses and subcortical volumes yielded higher balanced accuracy compared to cortical surface areas, which 
is consistent with the previous Enigma MDD meta-analysis, due to an overlap of study cohorts. When data was 
harmonized, there was no distinct subgroup of features providing more discriminative information. Together, 
we observed more changes in weights for cortical thicknesses and subcortical volumes after applying ComBat. 
One possibility is that differences are more pronounced in thickness than surface area, which is in line with 
previous findings from univariate  approaches57. Another possibility is that differences in scanners and acquisition 
protocols may affect thickness features more strongly than surface areas, in line with previous  works58. This is 
a very pertinent topic to be further investigated using multi-cohort mega-analyses on volumetric measures, 
particularly when the site effect is systematically considered.

Importantly, identified features correspond to the Splitting by Age/Sex strategy as the SVM model was 
trained on the whole data set with entirely mixed cohorts. While these regions were found to be informative 
according to the SVM with linear kernel, this model (and every other considered model) failed to differentiate 
MDD from HC on an individual level, thus one has to be cautious when interpreting these results. When we 
trained the SVM model with a linear kernel using data exclusively from a single site, a strong correspondence 
was not evident among the weights derived from various sites. This lack of sustained differences in individual 
weights underscores the absence of pronounced structural alterations even when the models are trained on 
more homogenous sets. Structural alterations in myelination, gray matter, and curvature were found to be 
associated with MDD-associated  genes59. Furthermore, a small sample study revealed MDD-related alterations 
in sulcal  depth60, while white matter topologically-based MDD classification led to up to 76% in  accuracy61. Thus, 
the performance could be potentially elevated by integrating morphological shape features with white matter 
characterestics, such as sulcal depth and curvature, and myelination density as it led to improved performance 
when classifying sex and  autism62.

Data stratification
When the data set was stratified, we found substantial differences in balanced accuracies between the groups 
only for Splitting by Age/Sex strategy without harmonization step, yet these results were strongly influenced by 
the site effect. Harmonization step equalizes the accuracies within all pairs of comparisons to a roughly chance 
probability. Same balanced accuracy was observed when the Splitting by Site strategy was used. This suggests 
that the demographic and clinical subgroups that we considered do not contain information to predict MDD on 
an individual level and do not differ in terms of the resultant accuracy, at least according to simplest ML models, 
despite the group level differences reported  prior10,63. Large sample meta-analysis of white mater characteristics 
that investigated similar subgroups also did not reveal significant  differences64, suggesting that the inclusion of 
these features into ML analysis might not be beneficial for classification improvement. Similarly, a large sample 
MDD classification study including structural and functional neuroimaging data did not reveal any significant 
differences between males and  females65. However, we speculate that other clinically relevant stratifications such 
as the number of depressive  episodes53,66 and course of  disease53,67 using functional data in further large studies 
may improve classifications.
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Conclusion
We benchmarked the classification of MDD versus HC using shallow linear and non-linear ML models applied 
to regional surface area features, cortical thickness features and subcortical volumes in the largest multi-site 
global data set to date. We systematically addressed the questions of A. general MDD characteristics and 
B. generalizability of models to perform on unseen sites by splitting the data according to A. demographic 
information (Splitting by Age/Sex) and B. site affiliation (Splitting by Site), which were complemented by ComBat 
harmonization. A classification accuracy up to 63% was achieved when all cohorts were present in the test 
set, which decreased down to 52% after ComBat harmonization. Here we have shown that most commonly 
used ML algorithms may not be able to differentiate MDD from HC on the single subject level using only 
structural morphometric brain data, even when trained on data from thousands of participants. Furthermore, 
the performance was not higher in stratified, clinically and demographically more homogeneous groups. 
Additional work is required to examine if more sophisticated algorithms also known as deep learning can 
achieve higher predictive power or if other MRI modalities such as task-based or resting state fMRI can provide 
more discriminative information for successful MDD classification.

Material and methods
Participant sample
A total of 5365 participants, 2288 patients with MDD and 3077 healthy controls, from 30 cohorts participating 
in the ENIGMA MDD working group, were included in the analyses. Information on sample characteristics, 
inclusion/exclusion criteria for each cohort can be found in Supplementary Table 1. Subjects with less than 75% 
of combined cortical and subcortical features and/or missing demographic/clinical information required for a 
particular analysis were excluded from the analysis. We implemented 75% as a reasonable cut-off value, which 
allowed us to accommodate a large amount of the available data without incurring biased model estimations. 
Furthermore, after exclusion of the subjects with less than 75% of existing data, total number of missing values 
was less than 10% from the remaining participants. According to the third guideline by  Newman68, (i.e., "for 
construct-level missingness that exceeds 10% of the sample, ML and multiple imputation (MI) techniques should 
be used under a strategy that includes auxiliary variables and any hypothesized interaction terms as part of the 
imputation/estimation model"), we performed data imputation by considering age and sex factors as "auxiliary 
variables". Missing cortical and subcortical features for the remaining subjects (2% of all data) were imputed by 
using multiple linear regression with age and sex of all subjects (regardless of diagnosis) as predictors, estimated 
for each cohort separately. The Ethics Committee of the University Medical Center (UMG), Germany, approved 
the study. In accordance with the Declaration of Helsinki, all participating cohorts confirmed approval from 
their corresponding institutional review boards and local ethics committees as well as collected written consent 
of all participants. In case of participants under 18 years old, a parent and/or legal guardian also gave the written 
consent.

Brain imaging processing
Structural T1-weighted 3D brain MRI scans of participating subjects were acquired from each site and 
preprocessed according to the rigorously validated ENIGMA Consortium protocols (http:// enigma. ini. usc. edu/ 
proto cols/ imagi ng- proto cols/). Information on the MRI scanners and acquisition protocols used for each cohort 
can be found in Supplementary Table 2. To facilitate the ability to pool the data from different cohorts, cortical 
and subcortical parcellation was performed on every subject via the freely available FreeSurfer (Version 5.1,5.3, 6 
and 7.2)  software69,70. Every cortical and subcortical brain parcellation was visually inspected as part of a careful 
quality check (QC) and statistically evaluated for outliers, according to the ENIGMA Consortium protocol 
(https:// enigma. ini. usc. edu/ proto cols/ imagi ng- proto cols/). Cortical gray matter segmentation was based on the 
Desikan–Killiany  atlas71, yielding cortical surface area and cortical thickness measures for 68 brain regions (34 
for each hemisphere), resulting in 136 cortical features. Subcortical segmentation was based on the Aseg  atlas71, 
providing volumes of 40 regions (20 for each hemisphere), of which we included 16: lateral ventricle, thalamus, 
caudate, putamen, pallidum, hippocampus, amygdala, and nucleus accumbens, bilaterally.

Data splitting into cross‑validation folds
We applied two different strategies to split the data into training and test sets: Splitting by Age/Sex and Splitting 
by Site. For both strategies, data was split into 10 folds, 9 of which were used for the training and the remaining 
fold was used as a test set. This was repeated iteratively until each fold was used once as a test set, thus performing 
the tenfold CV. We investigated the general differences in brain volumes that can characterize MDD by using 
the Splitting by Age/Sex strategy. In this way, the age and sex distribution as well as number of subjects between 
the folds were balanced to mitigate the effect of these factors on the classification performance. However, it 
should be noted that with each site represented in every CV fold the potential site effects in this strategy, if any, 
would be diluted between the folds, which would not represent a realistic clinical scenario, where a classification 
model likely has to generalize to unseen sites. Therefore, we used a second strategy, Splitting by Site, which 
would yield more realistic metrics of classification performance for unseen sites. Using this strategy, every site 
was present only in one fold, thus the model is always trained and tested on different sets of sites and sites were 
distributed across folds to balance the number of subjects in every fold as close as possible. In this scenario, 
potential site-specific confounders (e.g., different MR scanners/acquisition protocols, demographic and clinical 
differences, etc.) were not equally distributed between the training and test sets. In this way, we can fairly evaluate 
the generalizability from one cohort to another. Finally, to assess the performance estimates for each site, we 
explored leave-site-out CVs. Further details on both splitting strategies can be found in Supplementary Section 
“CV splitting strategies”.

http://enigma.ini.usc.edu/protocols/imaging-protocols/
http://enigma.ini.usc.edu/protocols/imaging-protocols/
https://enigma.ini.usc.edu/protocols/imaging-protocols/
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Classification models
We have chosen representative examples of shallow linear and non-linear classification models to establish a 
benchmark of MDD versus HC classification. For the linear models, we selected SVM with linear  kernel72, and 
logistic regression with different types of regularization: L1 (LASSO), L2 (Ridge), and L1 + L2 (Elastic Net)73. 
Both SVM and LASSO models are commonly used classification models used in  neuroimaging14 due to their 
low computational complexity. As regularization serves as an in-built feature selection algorithm, we evaluated 
SVM with additional feature selection via PCA and t-test. As many classification tasks are not linearly separable, 
potentially including MDD versus HC, we additionally evaluated robust shallow non-linear models, including 
SVM with RBF  kernel74, and ensemble classification algorithm—random  forest75,76. While, other shallow 
linear/non-linear models were evaluated for MDD versus HC classification task  previously14, including linear 
discriminant analysis (LDA)77, SVM with other non-linear kernels, a large sample benchmark analysis revealed 
no significant advantage of their application in the general neuroimaging  setting78.

Analysis pipeline
After distributing the data into CV folds corresponding to the splitting strategies, 9 folds were used for the 
training, while the remaining fold was held out as a test set (Fig. 3). CV folds were residualized normatively, 
partialling out the linear effect of age, sex and ICV from all cortical and subcortical features. In this step, age, sex 
and ICV regressors were estimated on the HC from training CV folds and applied to remove the effect of age, sex, 
and ICV from brain measures in the MDD training data and all test data. After normalizing all features to have 
mean of zero and standard deviation of one based on the mean and standard deviation estimates from the training 
set initial features’ distributions, training and test folds were used for training and performance estimation, 
respectively. Additionally, class weighting was performed to mitigate an unbalanced training set across classes. 
Models’ hyperparameters were estimated in the training data via nested 10-folds cross-validation using grid 
search (random splits, for both Splitting by Site and Splitting by Age/Sex), before the performance was measured 
on the test data to avoid data leakage through the choice of hyperparameters. The list of hyperparameters that 
were adjusted can be found in Supplementary Table 3. We evaluated the performance of SVM with linear kernel, 
SVM with rbf kernel, logistic regression with LASSO regularization, logistic regression with ridge regularization, 
elastic net, and random forest by using balanced accuracy, sensitivity, specificity and AUC as performance 
metrics. For the model-level  assessment79, all models were also trained on the subset of features, i.e. only cortical 
surface areas, only cortical thicknesses and only subcortical volumes. Lastly, we investigated which features 
contributed most to the classification performance by looking at the decision-making of the most successful 
model, in line with established  guidelines79. In case no performance differences across models were found, we 
reported the weights of the SVM with linear kernel as the representative classifier. These weights correspond 
to the classification performance of Splitting by Age/Sex strategy as all sites are used for weight’s estimation. To 
assess confidence intervals of the feature weights, we performed 599-bootstrap80,81 on the whole data set.

Further analyses were performed by stratifying the data according to demographic and clinical categories, 
including sex, age of onset (< 21 years old vs > 21 years old), antidepressant use (yes/no at time of scan), and 

Figure 3.  Detailed analysis pipeline. Initial data from all cohorts is split into training and test sets according 
to splitting strategies (Splitting by Age/Sex and Splitting by Site) after removing subjects with more than 75% 
missing data and data imputation steps. The corresponding training folds are then residualized directly to 
remove ICV, age and sex related effects and fed to the classification algorithms. In case of harmonization by 
ComBat, the residualization step takes place after the harmonization step is conducted. If training folds were 
harmonized by ComBat, the test fold was harmonized as well by using ComBat estimates from the training 
folds. Next, the test fold was residualized by using estimates obtained from the training folds. We estimated 
classification performance on the residualized test fold. This routine was performed iteratively for each 
combination of training and test folds.
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number of depressive episodes (first episode vs recurrent episodes). The subjects with missing information on 
these factors were not included in these analyses, while they were still considered for the main analysis.

All the steps from CV folds to classification were repeated with feature specific harmonization of site effects 
via ComBat. Variance explained by age, sex and ICV was preserved in the cortical and subcortical features during 
harmonization step. The harmonized folds were then residualized normatively with all subsequent steps from the 
analysis without harmonization step. Furthermore, we compared ComBat with two modifications: ComBat-GAM 
and CovBat. More detailed description of ComBat, ComBat-GAM and CovBat as well as their implementation 
for both splitting strategies can be found in Supplementary section “Harmonization methods”.

We used Python (version 3.8.8) to perform all calculations. All classification models and feature selection 
methods were imported from sklearn library (version 1.1.2). We modified ComBat script (https:// github. com/ 
Jfort in1/ ComBa tHarm oniza tion) to incorporate ComBat-GAM (https:// github. com/ rpomp onio/ neuro Harmo 
nize) and CovBat (https:// github. com/ andy1 764/ CovBat_ Harmo nizat ion) in one function for both splitting 
strategies.

Data availability
Organizers of the ENIGMA-MDD (https:// enigma. ini. usc. edu/ ongoi ng/ enigma- mdd- worki ng- group/) should 
be contacted directly to request data from this study. Authors are not authorized to share data from participating 
sites with third parties inside or outside the ENIGMA-MDD consortium.

Received: 23 January 2023; Accepted: 19 November 2023

References
 1. Kessler, R. C. & Bromet, E. J. The epidemiology of depression across cultures. Annu. Rev. Public Health 34, 119–138 (2013).
 2. Cho, Y. et al. Factors associated with quality of life in patients with depression: A nationwide population-based study. PLOS ONE 

14, e0219455 (2019).
 3. Cai, H. et al. Prevalence of suicidality in major depressive disorder: A systematic review and meta-analysis of comparative studies. 

Front. Psychiatry 12, (2021).
 4. Cleare, A. F. S. W. C. D. K. M. B. M. L. P. A. J. A multidimensional tool to quantify treatment resistance in depression: The Maudsley 

staging method. J. Clin. Psychiatry 70, 12363 (2009).
 5. Han, L. K. M. et al. Brain aging in major depressive disorder: Results from the ENIGMA major depressive disorder working group. 

Mol. Psychiatry https:// doi. org/ 10. 1038/ s41380- 020- 0754-0 (2020).
 6. Kraus, C., Kadriu, B., Lanzenberger, R., Zarate, C. A. Jr. & Kasper, S. Prognosis and improved outcomes in major depression: A 

review. Transl. Psychiatry 9, 1–17 (2019).
 7. Gorman, J. M. Comorbid depression and anxiety spectrum disorders. Depress. Anxiety 4, 160–168 (1996).
 8. Steffen, A., Nübel, J., Jacobi, F., Bätzing, J. & Holstiege, J. Mental and somatic comorbidity of depression: A comprehensive cross-

sectional analysis of 202 diagnosis groups using German nationwide ambulatory claims data. BMC Psychiatry 20, 142 (2020).
 9. Arnone, D., McIntosh, A. M., Ebmeier, K. P., Munafò, M. R. & Anderson, I. M. Magnetic resonance imaging studies in unipolar 

depression: Systematic review and meta-regression analyses. Eur. Neuropsychopharmacol. 22, 1–16 (2012).
 10. Schmaal, L. et al. Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts 

worldwide in the ENIGMA Major Depressive Disorder Working Group. Mol. Psychiatry 22, 900–909 (2017).
 11. Schmaal, L. et al. Subcortical brain alterations in major depressive disorder: Findings from the ENIGMA Major Depressive Disorder 

working group. Mol. Psychiatry 21, 806–812 (2016).
 12. Thompson, P. M. et al. The ENIGMA Consortium: Large-scale collaborative analyses of neuroimaging and genetic data. Brain 

Imaging Behav. 8, 153–182 (2014).
 13. Zhao, Y.-J. et al. Brain grey matter abnormalities in medication-free patients with major depressive disorder: A meta-analysis. 

Psychol. Med. 44, 2927–2937 (2014).
 14. Gao, S., Calhoun, V. D. & Sui, J. Machine learning in major depression: From classification to treatment outcome prediction. CNS 

Neurosci. Ther. 24, 1037–1052 (2018).
 15. Kambeitz, J. et al. Detecting neuroimaging biomarkers for depression: A meta-analysis of multivariate pattern recognition studies. 

Biol. Psychiatry 82, 330–338 (2017).
 16. Flint, C. et al. Systematic misestimation of machine learning performance in neuroimaging studies of depression. 

Neuropsychopharmacol. https:// doi. org/ 10. 1038/ s41386- 021- 01020-7 (2021).
 17. Stolicyn, A. et al. Automated classification of depression from structural brain measures across two independent community-based 

cohorts. Hum. Brain Mapp. 41, 3922–3937 (2020).
 18. Algermissen, J. & Mehler, D. May the power be with you: Are there highly powered studies in neuroscience, and how can we get 

more of them? J. Neurophysiol. 119, (2018).
 19. Kriegeskorte, N., Simmons, W. K., Bellgowan, P. S. F. & Baker, C. I. Circular analysis in systems neuroscience: The dangers of 

double dipping. Nat. Neurosci. 12, 535–540 (2009).
 20. Zhang-James, Y., Hoogman, M., Franke, B. & Faraone, S. V. Machine Learning And MRI-Based Diagnostic Models For ADHD: Are 

We There Yet? 2020.10.20.20216390 https://www.medrxiv.org/content/https:// doi. org/ 10. 1101/ 2020. 10. 20. 20216 390v1 (2020). 
https:// doi. org/ 10. 1101/ 2020. 10. 20. 20216 390.

 21. Duerden, E., Chakravarty, M., Lerch, J. & Taylor, M. Sex-based differences in cortical and subcortical development in 436 
individuals aged 4–54 years. Cereb. Cortex (New York, N.Y. : 1991) 30, (2019).

 22. Gennatas, E. D. et al. Age-related effects and sex differences in gray matter density, volume, mass, and cortical thickness from 
childhood to young adulthood. J. Neurosci. 37, 5065–5073 (2017).

 23. Schmaal, L. et al. ENIGMA MDD: Seven years of global neuroimaging studies of major depression through worldwide data sharing. 
Transl. Psychiatry 10, 1–19 (2020).

 24. Shrout, P. E. & Rodgers, J. L. Psychology, science, and knowledge construction: Broadening perspectives from the replication crisis. 
Annu. Rev. Psychol. 69, 487–510 (2018).

 25. Takao, H., Hayashi, N. & Ohtomo, K. Effect of scanner in longitudinal studies of brain volume changes. J. Magn. Reson. Imaging 
34, 438–444 (2011).

 26. Brown, E. C., Clark, D. L., Hassel, S., MacQueen, G. & Ramasubbu, R. Intrinsic thalamocortical connectivity varies in the age of 
onset subtypes in major depressive disorder. Neuropsychiatr. Dis. Treat. 15, 75–82 (2018).

 27. LeWinn, K. Z., Sheridan, M. A., Keyes, K. M., Hamilton, A. & McLaughlin, K. A. Sample composition alters associations between 
age and brain structure. Nat. Commun. 8, 874 (2017).

https://github.com/Jfortin1/ComBatHarmonization
https://github.com/Jfortin1/ComBatHarmonization
https://github.com/rpomponio/neuroHarmonize
https://github.com/rpomponio/neuroHarmonize
https://github.com/andy1764/CovBat_Harmonization
https://enigma.ini.usc.edu/ongoing/enigma-mdd-working-group/
https://doi.org/10.1038/s41380-020-0754-0
https://doi.org/10.1038/s41386-021-01020-7
https://doi.org/10.1101/2020.10.20.20216390v1
https://doi.org/10.1101/2020.10.20.20216390


15

Vol.:(0123456789)

Scientific Reports |         (2024) 14:1084  | https://doi.org/10.1038/s41598-023-47934-8

www.nature.com/scientificreports/

 28. Solanes, A. et al. Biased accuracy in multisite machine-learning studies due to incomplete removal of the effects of the site. 
Psychiatry Res. Neuroimaging 314, 111313 (2021).

 29. Johnson, W. E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression data using empirical Bayes methods. 
Biostatistics 8, 118–127 (2007).

 30. Fortin, J.-P. et al. Harmonization of cortical thickness measurements across scanners and sites. Neuroimage 167, 104–120 (2018).
 31. Fortin, J.-P. et al. Harmonization of multi-site diffusion tensor imaging data. Neuroimage 161, 149–170 (2017).
 32. Radua, J. et al. Increased power by harmonizing structural MRI site differences with the ComBat batch adjustment method in 

ENIGMA. NeuroImage 218, (2020).
 33. Abraham, A. et al. Deriving reproducible biomarkers from multi-site resting-state data: An Autism-based example. NeuroImage 

147, 736–745 (2017).
 34. Pomponio, R. et al. Harmonization of large MRI datasets for the analysis of brain imaging patterns throughout the lifespan. 

Neuroimage 208, 116450 (2020).
 35. Chen, A. A. et al. Removal of Scanner Effects in Covariance Improves Multivariate Pattern Analysis in Neuroimaging Data. bioRxiv 

858415 (2020). https:// doi. org/ 10. 1101/ 858415.
 36. Mårtensson, G. et al. The reliability of a deep learning model in clinical out-of-distribution MRI data: A multicohort study. Med. 

Image Anal. 66, 101714 (2020).
 37. Rozycki, M. et al. Multisite machine learning analysis provides a robust structural imaging signature of schizophrenia detectable 

across diverse patient populations and within individuals. Schizophr. Bull. 44, 1035–1044 (2018).
 38. Zindler, T., Frieling, H., Neyazi, A., Bleich, S. & Friedel, E. Simulating ComBat: How batch correction can lead to the systematic 

introduction of false positive results in DNA methylation microarray studies. BMC Bioinform. 21, (2020).
 39. Dinga, R., Schmaal, L., Penninx, B. W. J. H., Veltman, D. J. & Marquand, A. F. Controlling for effects of confounding variables on 

machine learning predictions. http://biorxiv.org/lookup/doi/https:// doi. org/ 10. 1101/ 2020. 08. 17. 255034 (2020). https:// doi. org/ 10. 
1101/ 2020. 08. 17. 255034.

 40. Tran, H. T. N. et al. A benchmark of batch-effect correction methods for single-cell RNA sequencing data. Genome Biol. 21, 12 
(2020).

 41. Dadi, K. et al. Benchmarking functional connectome-based predictive models for resting-state fMRI. NeuroImage 192, 115–134 
(2019).

 42. Jung, J.-H. et al. Penalized logistic regression using functional connectivity as covariates with an application to mild cognitive 
impairment. Commun. Stat. Appl. Methods 27, 603–624 (2020).

 43. Caprihan, A., Pearlson, G. D. & Calhoun, V. D. Application of principal component analysis to distinguish patients with 
schizophrenia from healthy controls based on fractional anisotropy measurements. Neuroimage 42, 675–682 (2008).

 44. Kim, D. et al. Machine learning classification of first-onset drug-naive MDD using structural MRI. IEEE Access 7, 153977–153985 
(2019).

 45. Ma, Q. et al. Classification of multi-site MR images in the presence of heterogeneity using multi-task learning. NeuroImage Clin. 
19, 476–486 (2018).

 46. Wen, J. et al. Convolutional neural networks for classification of Alzheimer’s disease: Overview and reproducible evaluation. Med. 
Image Anal. 63, 101694 (2020).

 47. Dockès, J., Varoquaux, G. & Poline, J.-B. Preventing dataset shift from breaking machine-learning biomarkers. http:// arxiv. org/ abs/ 
2107. 09947 (2021).

 48. Hopkins, W., Li, X., Crow, T. & Roberts, N. Vertex- and atlas-based comparisons in measures of cortical thickness, gyrification 
and white matter volume between humans and chimpanzees. Brain Struct. Funct. 222, (2017).

 49. Petrusic, I., Marko, D., Kacar, K. & Zidverc-Trajkovic, J. Migraine with aura: Surface-based analysis of the cerebral cortex with 
magnetic resonance imaging. Korean J. Radiol. 19, 767 (2018).

 50. Hellewell, S. C. et al. Profound and reproducible patterns of reduced regional gray matter characterize major depressive disorder. 
Transl. Psychiatry 9, (2019).

 51. Ho, T. C. et al. Subcortical shape alterations in major depressive disorder: Findings from the ENIGMA major depressive disorder 
working group. Hum. Brain Mapp. 43, 341–351 (2022).

 52. Xu, D. et al. Diffusion tensor imaging brain structural clustering patterns in major depressive disorder. Hum. Brain Mapp. 42, 
5023–5036 (2021).

 53. Qin, K. et al. Using graph convolutional network to characterize individuals with major depressive disorder across multiple imaging 
sites. eBioMedicine 78, 103977 (2022).

 54. Ramezani, M. et al. Temporal-lobe morphology differs between healthy adolescents and those with early-onset of depression. 
NeuroImage Clin. 6, 145–155 (2014).

 55. Tu, P.-C. et al. Regional cortical thinning in patients with major depressive disorder: A surface-based morphometry study. 
Psychiatry Res. Neuroimaging 202, 206–213 (2012).

 56. Lener, M. et al. Cortical abnormalities and association with symptom dimensions across the depressive spectrum. J. Affect. Disord. 
190, 529–536 (2015).

 57. Fung, G. et al. Distinguishing bipolar and major depressive disorders by brain structural morphometry: A pilot study. BMC 
Psychiatry 15, (2015).

 58. Iscan, Z. et al. Test–retest reliability of freesurfer measurements within and between sites: Effects of visual approval process. Hum. 
Brain Mapp. 36, 3472–3485 (2015).

 59. Li, J. et al. Cortical structural differences in major depressive disorder correlate with cell type-specific transcriptional signatures. 
Nat. Commun. 12, 1647 (2021).

 60. Qiu, L. et al. Characterization of major depressive disorder using a multiparametric classification approach based on high resolution 
structural images. J. Psychiatry Neurosci. 39, 78–86 (2014).

 61. Li, J. et al. White-matter functional topology: A neuromarker for classification and prediction in unmedicated depression. Transl. 
Psychiatry 10, 1–10 (2020).

 62. Gao, K. et al. Deep transfer learning for cerebral cortex using area-preserving geometry mapping. Cereb. Cortex https:// doi. org/ 
10. 1093/ cercor/ bhab3 94 (2021).

 63. Yang, X. et al. Sex differences in the clinical characteristics and brain gray matter volume alterations in unmedicated patients with 
major depressive disorder. Sci. Rep. 7, 2515 (2017).

 64. Liang, S. et al. White matter abnormalities in major depression biotypes identified by diffusion tensor imaging. Neurosci. Bull. 35, 
867–876 (2019).

 65. Winter, N. R. et al. Quantifying deviations of brain structure and function in major depressive disorder across neuroimaging 
modalities. JAMA Psychiatry 79, 879–888 (2022).

 66. Goya-Maldonado, R. et al. Differentiating unipolar and bipolar depression by alterations in large-scale brain networks. Hum. Brain 
Mapp. 37, 808–818 (2016).

 67. Whalley, H. C. et al. Prediction of depression in individuals at high familial risk of mood disorders using functional magnetic 
resonance imaging. PLOS ONE 8, e57357 (2013).

 68. Missing Data: Five Practical Guidelines—Daniel A. Newman (2014). https://journals.sagepub.com/doi/full/https:// doi. org/ 10. 
1177/ 10944 28114 548590.

https://doi.org/10.1101/858415
https://doi.org/10.1101/2020.08.17.255034
https://doi.org/10.1101/2020.08.17.255034
https://doi.org/10.1101/2020.08.17.255034
http://arxiv.org/abs/2107.09947
http://arxiv.org/abs/2107.09947
https://doi.org/10.1093/cercor/bhab394
https://doi.org/10.1093/cercor/bhab394
https://doi.org/10.1177/1094428114548590
https://doi.org/10.1177/1094428114548590


16

Vol:.(1234567890)

Scientific Reports |         (2024) 14:1084  | https://doi.org/10.1038/s41598-023-47934-8

www.nature.com/scientificreports/

 69. Han, X. et al. Reliability of MRI-derived measurements of human cerebral cortical thickness: The effects of field strength, scanner 
upgrade and manufacturer. Neuroimage 32, 180–194 (2006).

 70. Reuter, M., Schmansky, N. J., Rosas, H. D. & Fischl, B. Within-subject template estimation for unbiased longitudinal image analysis. 
Neuroimage 61, 1402–1418 (2012).

 71. Desikan, R. S. et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions 
of interest. Neuroimage 31, 968–980 (2006).

 72. Cortes, C. & Vapnik, V. Support-vector networks. Mach. Learn. 20, 273–297 (1995).
 73. Cramer, J. The Origins of Logistic Regression. https:// econp apers. repec. org/ paper/ tinwp aper/ 20020 119. htm (2002).
 74. Wang, J., Chen, Q. & Chen, Y. RBF Kernel Based Support Vector Machine with Universal Approximation and Its Application. In 

Advances in Neural Networks—ISNN 2004 (eds Yin, F.-L., Wang, J. & Guo, C.) 512–517 (Springer, 2004). https:// doi. org/ 10. 1007/ 
978-3- 540- 28647-9_ 85.

 75. Fawagreh, K., Gaber, M. M. & Elyan, E. Random forests: From early developments to recent advancements. Syst. Sci. Control Eng. 
2, 602–609 (2014).

 76. Lebedev, A. V. et al. Random Forest ensembles for detection and prediction of Alzheimer’s disease with a good between-cohort 
robustness. Neuroimage Clin. 6, 115–125 (2014).

 77. Tharwat, A., Gaber, T., Ibrahim, A. & Hassanien, A. E. Linear discriminant analysis: A detailed tutorial. AI Commun. 30, 169–190 
(2017).

 78. Schulz, M.-A. et al. Different scaling of linear models and deep learning in UKBiobank brain images versus machine-learning 
datasets. Nat. Commun. 11, 1–15 (2020).

 79. Kohoutová, L. et al. Toward a unified framework for interpreting machine-learning models in neuroimaging. Nat. Protoc. 15, 
1399–1435 (2020).

 80. Wilcox, R. R. Fundamentals of Modern Statistical Methods: Substantially Improving Power and Accuracy. Vol. xiii, 258 (Springer-
Verlag Publishing, 2001). https:// doi. org/ 10. 1007/ 978-1- 4757- 3522-2

 81. Pinaya, W. H. L. et al. Using normative modelling to detect disease progression in mild cognitive impairment and Alzheimer’s 
disease in a cross-sectional multi-cohort study. Sci. Rep. 11, 15746 (2021).

Acknowledgements
ENIGMA MDD: This work was supported by NIH grants U54 EB020403 (PMT) and R01MH116147 (PMT) 
and R01 MH117601 (NJ & LS). AMC: supported by ERA-NET PRIOMEDCHILD FP 6 (EU) grant 11.32050.26. 
AFFDIS: this study was funded by the University Medical Center Göttingen (UMG Startförderung) and 
VB and RGM are supported by German Federal Ministry of Education and Research (Bundesministerium 
fuer Bildung und Forschung, BMBF: 01 ZX 1507, “PreNeSt—e:Med”). Barcelona-SantPau: MJP is funded by 
the Ministerio de Ciencia e Innovación of the Spanish Government and by the Instituto de Salud Carlos III 
through a ‘Miguel Servet’ research contract (CP16–0020); National Research Plan (Plan Estatal de I + D + I 
2016–2019); and co-financed by the European Regional Development Fund (ERDF). CARDIFF supported by 
the Medical Research Council (grant G 1100629) and the National Center for Mental Health (NCMH), funded 
by Health Research Wales (HS/14/20). CSAN: This work was supported by grants from Johnson & Johnson 
Innovation (S.E.), the Swedish Medical Research Council (S.E.: 2017–00875, M.H.: 2013–07434, 2019–01138), 
the ALF Grants, Region Östergötland M.H., J.P.H.), National Institutes of Health (R.D.: R01 CA193522 and 
R01 NS073939), MD Anderson Cancer Support Grant (R.D.: P30CA016672) Calgary: supported by Canadian 
Institutes for Health Research, Branch Out Neurological Foundation. FPM is supported by Alberta Children’s 
Hospital Foundation and Canadian Institutes for Health Research. DCHS: supported by the Medical Research 
Council of South Africa. ETPB: Funding for this work was provided by the Intramural Research Program at the 
National Institute of Mental Health, National Institutes of Health (IRP-NIMH-NIH; ZIA-MH002857). Episca 
(Leiden): EPISCA was supported by GGZ Rivierduinen and the LUMC. FIDMAG: This work was supported by 
the Generalitat de Catalunya (2014 SGR 1573) and Instituto de Salud Carlos III (CPII16/00018) and (PI14/01151 
and PI14/01148). Gron: This study was supported by the Gratama Foundation, the Netherlands (2012/35 to 
NG). Houst: supported in part by NIMH grant R01 085667 and the Dunn Research Foundation. LOND This 
paper represents independent research (BRCDECC, London) part-funded by the NIHR Maudsley Biomedical 
Research Centre at South London and Maudsley NHS Foundation Trust and King’s College London. The views 
expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health 
and Social Care. MODECT: This study was supported by the Department of Psychiatry of GGZ inGeest and 
Amsterdam UMC, location VUmc. MPIP: The MPIP Sample comprises patients included in the Recurrent 
Unipolar Depression (RUD) Case-Control study at the clinic of the Max Planck Institute of Psychiatry, Munich, 
Germany. We wish to acknowledge Rosa Schirmer, Elke Schreiter, Reinhold Borschke, and Ines Eidner for 
MR image acquisition and data preparation, and Benno Pütz, and Bertram Müller-Myhsok for distributed 
computing support and the MARS and RUD Study teams for clinical phenotyping. We thank Dorothee P. Auer for 
initiation of the RUD study. Melbourne: funded by National Health and Medical Research Council of Australia 
(NHMRC) Project Grants 1064643 (Principal Investigator BJH) and 1024570 (Principal Investigator CGD). 
Minnesota the study was funded by the National Institute of Mental Health (K23MH090421; Dr. Cullen) and 
Biotechnology Research Center (P41 RR008079; Center for Magnetic Resonance Research), the National Alliance 
for Research on Schizophrenia and Depression, the University of Minnesota Graduate School, and the Minnesota 
Medical Foundation. This work was carried out in part using computing resources at the University of Minnesota 
Supercomputing Institute. Moral dilemma: study was supported by the Brain and Behavior Research Foundation 
and by the National Health and Medical Research Council ID 1125504 to SLW. NESDA: The infrastructure for 
the NESDA study (www. nesda. nl) is funded through the Geestkracht program of the Netherlands Organisation 
for Health Research and Development (Zon-Mw, grant number 10–000–1002) and is supported by participating 
universities (VU University Medical Center, GGZ inGeest, Arkin, Leiden University Medical Center, GGZ 
Rivierduinen, University Medical Center Groningen) and mental health care organizations, see www. nesda. 
nl. QTIM: The QTIM data set was supported by the Australian National Health and Medical Research Council 
(Project Grants No. 496682 and 1009064) and US National Institute of Child Health and Human Development 
(RO1HD050735). UCSF: This work was supported by the Brain and Behavior Research Foundation (formerly 

https://econpapers.repec.org/paper/tinwpaper/20020119.htm
https://doi.org/10.1007/978-3-540-28647-9_85
https://doi.org/10.1007/978-3-540-28647-9_85
https://doi.org/10.1007/978-1-4757-3522-2
http://www.nesda.nl
http://www.nesda.nl
http://www.nesda.nl


17

Vol.:(0123456789)

Scientific Reports |         (2024) 14:1084  | https://doi.org/10.1038/s41598-023-47934-8

www.nature.com/scientificreports/

NARSAD) to TTY; the National Institute of Mental Health (R01MH085734 to TTY; K01MH117442 to TCH) 
and by the American Foundation for Suicide Prevention (PDF-1-064-13) to TCH. SHIP: The Study of Health  
in Pomerania (SHIP) is part of the Community Medicine Research net (CMR) (http:// www. mediz in. uni- greif   
swald. de/ icm) of the University Medicine Greifswald, which is supported by the German Federal State of Meck-
lenburg—West Pomerania. MRI scans in SHIP and SHIP-TREND have been supported by a joint grant from 
Siemens Healthineers, Erlangen, Germany and the Federal State of Mecklenburg-West Pomerania. This study 
was further supported by the EU-JPND Funding for BRIDGET (FKZ:01ED1615). SanRaffaele (Milano): Italian 
Ministry of Health, Grant/Award Number: RF‐2011‐02349921 and RF-2018-12367489 Italian Ministry of Edu-
cation, University and Research (Miur). Number: PRIN -201779W93T. Singapore: The study was supported by 
grant NHG SIG/15012. KS was supported by National Healthcare Group, Singapore (SIG/15012) for the project.
SoCAT: Socat studies supported by Ege University Research Fund (17-TIP-039; 15-TIP-002; 13-TIP-054) and 
the Scientific and Technological Research Council of Turkey (109S134, 217S228). StanfFAA and StanfT1wAggr: 
This work was supported by NIH grant R37 MH101495. TIGER: Support for the TIGER study includes the 
Klingenstein Third Generation Foundation the National Institute of Mental Health K01MH117442 the Stanford 
Maternal Child Health Research Institute and the Stanford Center for Cognitive and Neurobiological Imaging 
TCH receives partial support from the Ray and Dagmar Dolby Family Fund. We acknowledge support by the 
Open Access Publication Funds of the Göttingen University.

Author contributions
R.G.M. and V.B. conceptualized and developed the analysis pipeline, which was approved by ENIGMA MDD 
working chair L.S., co-chair D.J.V., ENIGMA PI PMT. V.B. performed all the analyses mentioned in the manu-
script and RGM closely supervised them. T.E.G. and E.P. helped collecting and preparing the data from all 
participating cohorts. All authors participated in collecting and preprocessing data from their respective sites, 
reviewed and provided intellectual contribution to the manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests 
PMT and NJ received a research grant from Biogen, Inc., for research unrelated to this manuscript. HJG has 
received travel grants and speakers honoraria from Fresenius Medical Care, Neuraxpharm, Servier and Janssen 
Cilag as well as research funding from Fresenius Medical Care unrelated to this manuscript. JCS has served as a 
consultant for Pfizer,Sunovion, Sanofi, Johnson & Johnson, Livanova, and Boehringer Ingelheim. The remaining 
authors declare no conflict of interest.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 023- 47934-8.

Correspondence and requests for materials should be addressed to R.G.-M.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2024

 

the ENIGMA Major Depressive Disorder working group

Vladimir Belov1, Tracy Erwin‑Grabner1, Moji Aghajani2,3, Andre Aleman4, Alyssa R. Amod5, 
Zeynep Basgoze6, Francesco Benedetti 7, Bianca Besteher8, Robin Bülow9, 
Christopher R. K. Ching10, Colm G. Connolly11, Kathryn Cullen 6, Christopher G. Davey12, 
Danai Dima13,14, Annemiek Dols2, Jennifer W. Evans15, Cynthia H. Y. Fu16,17, 
Ali Saffet Gonul18, Ian H. Gotlib 19, Hans J. Grabe20, Nynke Groenewold5, J Paul Hamilton 
21,22, Ben J. Harrison12, Tiffany C. Ho23,24, Benson Mwangi25,26, Natalia Jaworska27, 
Neda Jahanshad10, Bonnie Klimes‑Dougan28, Sheri‑Michelle Koopowitz5, 
Thomas Lancaster 29,30, Meng Li8, David E. J. Linden 29,30,31,32, Frank P. MacMaster33, 

http://www.medizin.uni-greifswald.de/icm
http://www.medizin.uni-greifswald.de/icm
https://doi.org/10.1038/s41598-023-47934-8
https://doi.org/10.1038/s41598-023-47934-8
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0003-4949-856X
http://orcid.org/0000-0001-9631-3770
http://orcid.org/0000-0002-3622-3199
http://orcid.org/0000-0001-7982-4659
http://orcid.org/0000-0003-1322-2449
http://orcid.org/0000-0002-5638-9292


18

Vol:.(1234567890)

Scientific Reports |         (2024) 14:1084  | https://doi.org/10.1038/s41598-023-47934-8

www.nature.com/scientificreports/

David M. A. Mehler29,30,34, Elisa Melloni7, Bryon A. Mueller 6, Amar Ojha35,36, 
Mardien L. Oudega2, Brenda W. J. H. Penninx2, Sara Poletti 7, Edith Pomarol‑Clotet37, 
Maria J. Portella38, Elena Pozzi39,40, Liesbeth Reneman41, Matthew D. Sacchet42, 
Philipp G. Sämann43, Anouk Schrantee41, Kang Sim 44,45,46, Jair C. Soares26, 
Dan J. Stein 47, Sophia I. Thomopoulos10, Aslihan Uyar‑Demir18, Nic J. A. van der Wee48, 
Steven J. A. van der Werff48,49, Henry Völzke50, Sarah Whittle51, Katharina Wittfeld 20,52, 
Margaret J. Wright53,54, Mon‑Ju Wu25,26, Tony T. Yang23, Carlos Zarate55, Dick J. Veltman2, 
Lianne Schmaal 39,40, Paul M. Thompson10 & Roberto Goya‑Maldonado1*  

http://orcid.org/0000-0003-2429-0391
http://orcid.org/0000-0001-9594-0246
http://orcid.org/0000-0003-3209-9626
http://orcid.org/0000-0001-7218-7810
http://orcid.org/0000-0003-4383-5043
http://orcid.org/0000-0001-9822-048X

	Multi-site benchmark classification of major depressive disorder using machine learning on cortical and subcortical measures
	Results
	Participants and data splitting
	Full data set analysis
	Data stratification
	Males versus females
	Age of onset
	Antidepressant use versus antidepressant free (at the time of MR scan)
	First episode versus recurrent episodes

	Discussion
	Data splitting and site effect
	Machine learning performance
	Predictive brain regions
	Data stratification

	Conclusion
	Material and methods
	Participant sample
	Brain imaging processing
	Data splitting into cross-validation folds
	Classification models
	Analysis pipeline

	References
	Acknowledgements


